
734 STRUCTURE OF ALUIVIINUIV[ PHOSPHATE AND GALLIUM PHOSPHATE 

0"182 0-318 0.182 

I i ; , ,  ' I ."0"~ ",.- " 0"682:'. 

() '318,""" " '"" '~ 0"318 '," 
I "", 
I \~>'--L~o.682,._ ~ 

.q._y - .  .,',o.182 ,~.. ../ o.~,~:"~-~ 
0"033(,~,~C,,._)0"467 " ~ 0 " 7 5 -  0 " 0 3 3 t  )0"467 ," " 0 0 . 7 5  

0.25~ kA "" o.,670©o.s33"'-, p.2s,," ©o.96z 
I " "  0"182 . \ 0"318 >." "." 0"182 , ,  

y.  I "~, / ~ ~ "-. ~ ," 
,~ ~ ^ . ~ - ~  >-- -c-O0 

~ 0 \  u..~ \ v  k J  \ 
" .'0-182 \ . . . . . /  0.682". . '0"- -~-2  

0"75(~)" 0"033 ~b_.)0"467 /~)()'75 (,~)0"033 

o9670 o533 ,0 o96;,0 os3  ._.." ' 
_ / . 0-318 

0.~" L_)0-682 ( ~ 0  0.682 
0-182 

Fig. 1. Gallium phosphate, low-cristobalite type; [001] pro- 
jection of the crystal structure. The true base-centered cell 
is indicated by full lines, and the pseudo-cell, comparable 
to that  of low-eristobalite silica, by heavy broken lines. 

No preliminary assumptions were made concerning 
the magnitude of the M-O distances in the MPO¢ 
structures; a wide range of values were tested with 
various phosphate group positions. In  the case of low- 
cristobalite ALP04, the distance Al-O was found to be 
1.70 J~. This value has also been reported for four- 
coordinated A1-O in the crystal of A1AsO 4 (Machatski, 
1935), which is structurally analogous to low-quartz. 
I t  is considerably smaller than would be deduced from 
the assumption of ionic radii. For instance, in AlcOa 
(corundum) the average O-A1 distance in six-coordina- 
tion is 1.9I A (three at 1.89, three at 1-93 A). Correc- 
tion of this distance to four coordination gives about 
1.79 h .  

The value of 1.78 A was found for the Ga-O distance 
in low-cristobalite GaP0¢. There are no available 
experimental data with which to compare it. For ionic 
radii, the distance for four coordination would be in 
the neighborhood of 1.85 A. 

The author wishes to thank Mr Alvin Perloff for 
the preparation of the compounds, and for assistance 
in the early stages of the investigation. 

In low-cristobalite Si02 the angle S i -0-Si  is 150 °. 
The analogous angle is smaller in the two phosphates, 
and decreases with the heavier metal:  it is 145 ° for 
AI -0 -P ,  and 135 ° for G a - 0 - P .  This difference in the 
orientation of the oxygen tetrahedra accounts for the 
facts tha t  the A1P0¢ cell is not quite as large compared 
to that  of SiO~ as might be expected from spatial con- 
siderations; and tha t  the structural unit of GaPO 4 can 
be accommodated in a smaller cell volume than tha t  
of A1P0¢ or even SiO~, despite its larger M-O separa- 
tion. 
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The effect of temperature on the Bragg reflexion from crystals is examined theoretically for a 
general crystal. I t  is shown that measurements of this effect can be used to obtain information 
about the vibrational spectrum of a crystal. A comparison is made of the existing data and the 
theoretical predictions. 

The effect of temperature on the reflexion of X-rays 
from crystals was first investigated by Debye (1914), 
and in the form due to Waller (1925) is part  of stan- 
daxd X-ray theory. The theory shows tha t  the in- 
tensity of X-rays reflected by a particular set of Bragg 

planes varies with temperature in the form e x p ( -  2M), 
where 

M = 8,~u~ sin ~ 0/~. 2 , (1) 

0 being the Bragg angle, 2 the wavelength of the 
X-rays and u; an averaged mean square displacement 
in the direction z perpendicular to the planes. The 
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exponent M has the properties of a second-order 
tensor (Zener, 1936) and can be expressed as 

Ms = Mzl~ + M21. ~ + Mal~ , (2) 

where Mz,  M~, M s are the values of M along principal 
axes and 11, le, 1 a are the direction cosines of a vector 
in the direction S with respect to these axes. An ex- 
pression of this form has been used by Zener in dis- 
cussing close-packed hexagonal metals. (Though there 
are here two particles per cell, their arrangement is 
such tha t  it can be concluded tha t  the M values are 
the same for each particle.) 

The Debye-Waller  theory, as normally used, em- 
ploys a Debye vibrational spectrum in the evaluation 
of (1) for cubic crystals, and a set of Debye 0D values 
in the more general case. An exact evaluation has 
been given by Waller in the case of simple cubic 
crystals; here M is independent of the direction of z 
and it is possible to express u~ in terms of an integral 
involving the vibrational spectrum. An analysis of the 
effects to be expected from various vibrational spectra 
has been given by Blackman (1937) in such cases. 

Experimental investigations of a more detailed 
character than those so far available are necessary 
before the theory can be employed to supplement 
usefully the information on the vibrational spectrum 
derived from other sources. I t  does, however, appear 
likely tha t  recent improvements in technique of 
measurement could provide accurate data. 

I t  seems worth while to point out tha t  the theory 
can be extended to the case of a general crystal, 
yielding an expression involving the vibrational spec- 
t rum in a direct manner. In  the case of complex 
crystals where specific-heat data  alone do not provide 
anything like unique information on the vibrational 
spectrum, measurements on the temperature-de- 
pendence of X-rays can provide very useful additional 
evidence. 

2 
The scattering of X-rays by a lattice is treated here 
in the same way as for a large molecule in the form 
given by Born (1942). The particles are numbered 
successively by the index p (p = 1, 2 . . . .  , n), the 
masses being mp and the displacements up. The 
intensity of X-rays scattered from an assembly of 
particles is proportional to IFI ~, where 

/~ = ~vfp exp [i(Q.rp)]  exp [ i (Q.up)] .  (3) 
p 

Here Q = 2 z ( S - S 0 ) / 2  ' where S O and S are unit 
vectors in the direction of the incident and the scat- 
tered radiation respectively. The vector rp is drawn 
from an arbi t rary  origin to the particle p when in 
its undisturbed condition. The term fv is the atomic 
scattering factor of the particle p. 

7 3 5  

The displacements are represented in terms of 
normal coordinates ~1 (j = 1, 2 . . . .  ,3n)  by the linear 
transformation 

m~up = 2: e ~ j .  (4) 

The vectors e j form an orthonormal set in 3n-dimen- P. 

sional space, e~o, ~ (c~ = x, y, z) being generalized direc- 
tion cosines in this space. I t  follows tha t  

• - t  

2: e~.e~ = ~tz,. (5) 
p 

The intensity function F F *  can then be written as 

where 

F.F* = 2: ZpZ~*, exp [ i (2 : /~p ,@] ,  (6) 
PP' ] 

Ip = fp exp [ i (O. rp) ] ,  (7a) 

,u~p, = Q.  (e~m-~½-e~,m;,½) . (7b) 

The statistical averaging of the intensity function, 
which is a somewhat doubtful point in the earlier 
work, has been investigated thoroughly by several 
authors (Ott, 1935; Born, 1942), the result being 

F F *  = 2:  IpZ*, I1 exp [-½(#~,)~g/w?~], (8) 
pp" ] 

gj being the mean energy of a linear harmonic oscillator 
of frequency eoi/2z. 

The important  quant i ty  (/~.)~ takes the form 

(9) 

e~ being the component of e~o along the direction of Q. 
Of the three terms in (9) only the first two are 

important  in considering the effects in the immediate 
neighbourhood of a Bragg reflexion. The third term 
leads to the ' thermal spots' observed in directions 
where the Bragg condition is not satisfied. Hence, in 
considering the variation with temperature of a Bragg 
reflexion, it is sufficient to investigate the intensity 
function 

where 

I = ,~,IpI*.  exp [-Mpq] exp [ - M c q ]  , (10) 
pp '  

Mpq = ½Q2.X gJ 2 (e~q) 2 . (11) 
j mpO,)j 

I t  follows from (11) tha t  

p ' col 

We now consider three directions for the vector 
Q(Q~, c~ = 1, 2, 3) which are perpendicular to each 
other, these being labelled as the x, y, z axes. Adding 
the three terms of type (12), we find 
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~ 2 m ~ \  Q~ +--A~ +-Q~') Q~ 

~ (13) : .{ '-'., .{. 
O)..~ 

We can now specialize the result for the case of a 
lattice containing N cells with g particles in each cell. 
The symbol T is replaced by two indices (1, k), where 
1 numbers the cells and k the particles in each cell. 
Then, because of the periodic nature of the lattice, 

Mz, ,, q = Mz+r, ~., q, (14) 

i.e. it is independent of 1. (A rather more formal, proof 
can be obtained by using the explicit form for e~ given 
by Born (1923) for a lattice, using periodic boundary 
conditions.) We can therefore omit the suffix l, and 
~ i t e  (13) in the form 

(15) A 

in which the vibrational spectrum enters directly, and 
which i s  directly related to M values tha t  can be 
obtained experimentally. This expression can be put  
into a rather more familiar form by writing 

Mk~ = ½Qxukz~ 2 = 8~'_~ sin~.0u~,z. 

(16) 

Then (15) becomes 

, - ~ 2 1 g~ 3g l ~(v)g~,-~dv 

where the integrals are taken over the whole vibra- 
tional spectrum, ~(v) is the distribution function for 
the frequencies and 

f ~(v)d~, = 3gN . 

Equations (15) and (16) represent, then, the gener- 
alization of the form found in the case of cubic crystals 
containing one particle per cell. A discussion of par- 
ticular cases and a comparison with experimental 
results will be given below. 

3 
If we consider the general form of Mpq given in (11) 
for a particular particle p in the lattice and a given 
direction q, it can be seen that  this has the properties 
of a second-order tensor. I t  we take a set of cartesian 
axes then 

where 11,/2,/s are the direction cosines of 0 with 
respect to these axes. Hence Mpq will be a general 

quadratic form in 11, l~., la which can be transformed 
into a sum of squares of the l~ if the axes are suitably 
chosen. This result holds for all the Mp~ values for the 
particles in a lattice cell. The principal axes do not 
in the general case need to be the same for all particles, 
but  this will be so for crystals with a high degree of 
symmetry  where the principal axes will coincide with 
the crystal axes. 

For hexagonal crystals it will follow, for instance, 
tha t  

Mkq = Mkz cos O~+Mks sin s 01, (18) 

where 01 is the angle made by 0 with the hexagonal 
(z) axis and s denotes a direction perpendicular to this 
axis. The hexagonal metals contain two particles 
(k = 1, 2) per cell of equal mass, each surrounded by 
particles which are such tha t  one set can be trans- 
formed into the other, for example by a rotation 
through 180 ° about the hexagonal axis. I t  follows 
tha t  the equations of motion of one of the particles 
can be arranged to have the same form as tha t  of the 
other by a reversal of the coordinate axes and a change 
in the numbering of the cells. The magnitude of u~q 
should therefore be the same as u~q. 

A general point can be made concerning the value 
of u-~ at high temperatures, which has the form 

(e~)~ (19) • k T ~ . _ _ ~  . 

I t  has been pointed out by Waller (1925) in the ease 
of alkali halides tha t  the sum over the normal vibra- 
tions will be proportional to the mass of the particle, 
i.e. u~--q is independent of the mass of the particle but  
depends only on the forces between particles. This 
follows from a formal evaluation of the sum, using the 
equations of motion and the properties of the eigen- 
vectors. The result, however, is of general validity, 
as can be seen from the work of Waller, or by examin- 
ing the expression for the sum in (19) given by Born 
(1942). 

For crystals with cubic symmetry__Mkq will be in- 
dependent of the direction of Q, and U~z independent 
of z, though in the latter case the suffix is retained. 
From (16) it follows that  

. (20) 
k 4~2 I q (~')dv 

In the case of one particle per cell (e.g. in the case of 
f.c.c, or b.e.c, metals), this leads to the general form 
of the Debye-Waller theory obtained in earlier work. 
When there are two particles per cell, as for the alkali 
halides, we have 

½(mlu~z+meu~)=--4--~ 2 ~(~,)g~,-2d~, ~(~)d~. (21) 
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This type of averaging has been employed by Waller 
& James {1927) in comparing experimental measure- 
ment on rocksalt with theory. Unfortunately, a rather 
approximate theoretical formula was used. We can 
now use the exact form, as the vibrational spectrum 
of rocksalt has been evaluated (Kellermann, 1940). 
As the experimental values are concerned with 
moderately high temperatures, we use (21) in the 
limiting form where g - - k T .  We define a limiting 
0(X-R.) value in terms of a frequency u(X-R.) defined 
a s  

3 I e (~) ~'-2d~' 
- ( 2 2 )  

v(X'R')~ I Q(~)d~ 

If a Debye vibrational spectrum were used, v(X-R.) 
would be equal to the Debye frequency v~. I t  is 
theoretically unlikely that  the v(X-R.) value as cal- 
culated from (22) will differ from that evaluated in 
the more general averaging, using (21) at moderately 
high temperatures. In using (22) it is convenient to 
work out the ratio v(X-R.)/v D (or O(X-R.)/OD) 
where the VD value is obtained from the elastic con- 
stants at room temperature. In the case of rocksalt 
this ratio is found to be 0.925. As the 0D (elastic) 
value is 300 ° K., 0(X-I~.) is 278 ° K. The value ob- 
tained from the experimental work of James is 281 ° K. 
The agreement would appear to be perfect. I t  is rather 
disturbing, therefore, to find that  the recent measure- 
ments of Renninger (1952) give a different 0 value, 
namely 320 ° K., which is much higher than can be 
accounted for. The relation 0(X-R.)/0D(elastic) < 1 is 
of a very general nature and is due to the existence 
of peaks in the vibrational spectrum at low frequencies. 
The elastic constants of rocksalt have been measured 
by a number of investigators and the agreement is 
reasonably good. The vibrational spectrum calculated 
theoretically gives good agreement with specific-heat 
data. I t  is therefore difficult to see any reason for the 
discrepancy. 

I t  should however be pointed out that  there does 
also appear to be a discrepancy in the case of sylvine. 
The experimental 0(X-I~.) value is given as 240 ° K. 
(James, 1948), the 0~(elastic) value calculated from 
elastic data at room temperature is 230 ° K., and the 
theoretical 0(X-R.) value which we obtain using the 
vibrational spectrum {Iona, 1941) is 220 ° K. 

Apart from the alkali halides, little appears to have 

been done experimentally, but measurements have 
been reported on the hexagonal metals (see Lonsdale, 
1942). I t  has been usual to assume, in interpreting 
these measurements, that  the variation with tern- 

2 along and perpendicular to the hex- perature of uq 
agonal axis can be represented by a Debye-Waller 
formula with different 0 values for these directions. 
While it is possible to produce arguments for this 
procedure when a continuum approach is used, it is 
by no means clear that  this is justified when the 
lattice character of the crystal is taken into account. 
Calculations which have been carried out so far have 
used the continuum approach. Zener (1936) worked 

2 at moderately high temperatures out the value~: of u~ 
for zinc and cadmium, but the agreement with ex- 
periment, though qualitatively correct, was poor in 
magnitude. Kohler (1939) concentrated on the low- 

temperature aspect and calculated the ratio (u~/u9 2s). 
(cf. (18)) in which the contribution of the zero-point 
energy was excluded. This investigation, which made 
use of the elastic constants only, is certainly theoret- 
ically well founded provided the temperature is 
sufficiently low. The value calculated is remarkably 
close to the ratio given by experiment; since however 
the experiments were carried out at temperatures well 
above those for which the theory should apply, one 
can only conclude that  the ratio must be rather in- 
sensitive to temperature. 
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